

The contingency table given below classifies 100 business accounts by salesperson and cash/credit.

	•	Jane	Malcolm	Leah	291 200
	cash	20	10	30 60	Thom
	credit	$\stackrel{10}{2}$	20	10 40	770
1. Refer to	the table above.	What fraction	on of all accounts	s are cash accounts?	9-23
a) 60/100	b) 70/100 c) 20/50 d) 70/100 e) 20	0/30	1/2.216

3. Refer to the table above. What fraction of all accounts do Jane and Leah together account for?

a) 60/100 b) 30/100 c) 20/50 (d) 70/100 e) 20/30

- 4. Refer to the table above. What name is given to {30/100, 30/100, 40/100}?
- - b) conditional distribution of sales by salesperson, for cash accounts
 - c) conditional distribution of sales by salesperson, for credit accounts
 - 5. Refer to the table above. What name is given to {20/60, 10/60, 30/60}?
 - a) marginal distribution of sales by salesperson
 - b) conditional distribution of sales by salesperson, for cash accounts
 - c) conditional distribution of sales by salesperson, for credit accounts
 - 6. Refer to the table above. What name is given to {10/40, 20/40, 10/40}?
 - a) marginal distribution of sales by salesperson
 - b) conditional distribution of sales by salesperson, for cash accounts
- D c) conditional distribution of sales by salesperson, for credit accounts

7. Ten cars fail a crash test and 20 cars pass the test. A bar graph for this information has height 10 above "fail." What is the height of the bar above "pass?"
a) 10 b) 5 (c) 20 d) 25 e) 15
8. A graph of the fluctuations of the DOW has a vertical scale running from 5,000 up to 12,000. What principle of visual display is violated by this graph?
a) rectangular display elements principle b) two for one principle c) principle of parsimony d) area principle
9. A PROBABILITY histogram is prepared from counts of people's ages class intervals of age (0, 20], (20, 40], (40,50], (50, 60], (60, ∞) numbers of persons 20 25 5 30 20 total 100 persons Give the height of the box (bar) above the class interval (50, 60]. a) 30/100 b) 3/100 c) 15/100 d) 30/10 e) 30 ### ### ###########################
10. If sex is statistically unrelated to smoking (independent of smoking) what number of counts should appear in the blank cell of the table below?
smoker non-smoker female 20 60 PROPORTION ACTY male 10 30
a) 60 b) 10 c) 20 d) 30 e) 5
11. Determine the median of the list {6, 6, 3, 6, 7, 99, 120, 8}.
11. Determine the median of the list {6, 6, 3, 6, 7, 99, 120, 8}. a) 6 b) 8 c) 7 d) 6.5 e) 31.875 3 6 6 7 8 99 /20
$\frac{6+7}{2} = 6.5$

12. Determine the mean of the list {0, 4, 4, 4}. a) 4 b) 2 c) 3.5 d) 3/e) 12
13. Here is a number line with numbers indicated by asterisks. Where is the median? * ** ** *** **
a b cd e $M=7$
14. Here is a number line with numbers indicated by asterisks. Where is the mean?
THURD ANG OF TWO
15. Determine the lower quartile for the data /5 6 6 10 50 100 200 6003
a) 6.5) b) 75 c) 7 d) 30 e) 6 $M = 8$ $(M+1)p = 9(.25) = 2.25$
16. Determine the sample standard deviation s for data {0, 4}.
(a) 6.5) b) 75 c) 7 d) 30 e) 6 (M+1) $p = 9(.25) = 2.25$ 16. Determine the sample standard deviation s for data $\{0, 4\}$. 25 $p = 7$ AND 32d 28 $p = 7$ (0-2) $p = 7$ (4-2) $p = 8$
17. Determine the <i>sample</i> standard deviation s for data {0, 1, 5}.
a) 1.84 b) 0.48 c) 2.32 d) 3.18 e) 2.65 $\sqrt{(2)^2 + (1-1)^2 + (5-2)^2} \chi = 2$
18. A list has mean 6.2. If every number on this list is multiplied by two what will be the mean be changed to?
a) 8.2 b) 12.4 c) 3.1 d) 5.1 e) none of the others
19. A list has <i>sample</i> standard deviation s equal to s . What will s be changed to if each number on the list is increased by two (new list s + 2)?
a) 10 b) 16 c) 8 d) 9

20. A list has sample standard deviation s equal to 8. What will s be changed to if each number on the list is doubled and then each is increased by one (new list $2x + 1$)?
each is increased by one (new list $2x + 1$)? a) 8 b) 10 c) 6 d) 17 e) 16 $2x + 1$ $\sqrt{2x + 1} = \sqrt{2x} = 2 Ax$ $\sqrt{x} = \sqrt{x} = 2 Ax$
0.025 0.020 0.015 0.010 0.005 0.005
60 80 100 120 140 160 The sketch above is a normal probability density having mean 100 and standard deviation 15.
21. Determine the percentage of the population between the limits of 85 and 115 from the density above. a) 50% b) 30% c) 68% d) 95% e) 80% MFAN ± 1 5D 15 68 \$\frac{1}{2}\$ OF New MEAN \$\frac{1}{2}\$ OF
22. Which among the following exhibit importent aspects of Simpson's "Paradox" as described in class and in your textbook in connection with the Berkeley graduate admissions data?
(22.1) Female applicants are admitted at a higher rate than male applicants to every division of a company and yet male applicants are admitted at a higher rate than female applicants for the company as a whole. (22.2) Females apply in relatively greater numbers than do males to divisions that are harder for both sexes to get a job in. (22.3) Female applicants are admitted at a higher rate than male applicants to every division of a company and male applicants are admitted at a higher rate than female applicants for the company as a whole.
(a) all b) only 23,1 c) only 23,3 d) only 22.2 and 23,3 e) only 22.1 and 22.2
1 1 (e) CORRECT)
CAUSTON